# International Management Studies

Class 10

November 13, 2025

# Contents

- I. Time Value of Money
- II. How to calculate the future value
- III. How to calculate the present value
- IV. Q&A

# I. Time Value of Money

# Meaning of Time Value of Money (TVM)

The **Time Value of Money (TVM)** is the financial concept that **money available today is worth more than the same amount of money in the future** because of its potential earning capacity. In other words, a dollar today can be invested to earn interest, returns, or profits, making it worth more than a dollar received in the future.

Mathematically, this is expressed through:

$$PV = rac{FV}{(1+r)^n}$$

where

- PV = Present Value
- FV = Future Value
- r = interest rate (or discount rate)
- **n** = number of periods

# Importance of Knowing the Concept

#### 1. Investment Decision-Making

Investors use TVM to evaluate whether an investment today will generate sufficient returns in the future. It helps compare investment options that have different time horizons.

## 2. Loan and Mortgage Planning

Banks and individuals apply TVM when calculating loan repayments, interest costs, and amortization schedules.

### 3. Capital Budgeting

Firms use TVM in tools such as **Net Present Value (NPV)** and **Internal Rate of Return (IRR)** to decide whether to proceed with long-term projects.

### 4. Retirement and Savings Planning

Financial planners use TVM to estimate how much money should be saved today to reach a specific financial goal in the future.

### 5. Pricing and Valuation

It is critical in valuing **bonds**, **stocks**, **leases**, **and annuities**, which depend on the discounted value of future cash flows.

# Applications in the Business World

### 1. Corporate Finance:

- Determining the value of future cash flows from a project.
- Assessing mergers and acquisitions based on the discounted cash flow (DCF) model.

## 2. Banking and Lending:

- Calculating loan payments, interest rates, and present value of annuities.
- Structuring repayment schedules that balance principal and interest.

## 3. Investment Analysis:

- Estimating bond prices using the present value of future coupon payments and face value.
- Evaluating stock valuation based on expected dividends.

#### 4. Insurance and Pension Funds:

Estimating future obligations or benefits and discounting them to present value.

# 5. Real Estate and Leasing:

 Calculating the present value of future rent payments to decide whether to lease or buy an asset.

# II. How to calculate the future value



# 1. Investment Growth in a Bank Deposit

## Case:

A company deposits \\ \pm 100 million in a fixed savings account that earns 4% annual interest for 5 years.

# Calculation:

$$FV = PV(1+r)^n = 100,000,000(1+0.04)^5 = \text{\forall}121,665,290$$

# Interpretation:

After 5 years, the initial ₩100 million grows to about **₩121.7 million** — showing how the value of money increases over time with compound interest.

# 2. Retirement Savings Planning

#### Case:

An employee invests \#500,000 each month in a pension fund earning 6% annual interest (0.5% per month) for 20 years.

## Calculation (Future Value of an Annuity):

$$FV = P imes rac{(1+r)^n - 1}{r}$$
 
$$= 500,000 imes rac{(1.005)^{240} - 1}{0.005} = extbf{23},155,000,000$$

# Interpretation:

Consistent monthly savings can accumulate to a large amount because of **compound growth** — a key motivation for long-term retirement planning.



# 3. Corporate Project Investment

#### Case:

A firm invests \$10 million in new machinery expected to yield 8% annual returns for 7 years.

# Calculation:

$$FV = 10,000,000(1+0.08)^7 = \$17,143,589$$

# Interpretation:

At the end of 7 years, the project's returns are equivalent to \$17.14 million. The management uses FV to compare this with the cost of capital and decide if the investment is worthwhile.



# 4. Bond Interest Accumulation

#### Case:

An investor buys a zero-coupon bond for \$800, which will mature in 10 years at a face value of \$1,200.

#### Calculation:

To verify the yield or to find FV:

$$FV = PV(1+r)^n$$

$$1,200 = 800(1+r)^{10} \Rightarrow r = (1.5)^{1/10} - 1 = 4.14\%$$

## Interpretation:

The FV (\$1,200) shows the **redeemable amount** the investor will receive, and the calculation helps determine the bond's **implied yield**.



# ♠ 5. Real Estate Investment

#### Case:

A real estate investor buys a property for \\ \mathbb{#200 million}, expecting it to appreciate 5% annually for 10 years.

# Calculation:

$$FV = 200,000,000(1.05)^{10} = \$325,779,000$$

# Interpretation:

After 10 years, the property value is projected to rise to about ₩326 million — a 63% gain, excluding rental income.

# III. How to calculate the present value



# 1. Corporate Investment Decision (Capital Budgeting)

#### Case:

A company expects a project to generate **\#120 million** in 3 years. The required rate of return (discount rate) is **8%**.

#### Calculation:

$$PV = \frac{FV}{(1+r)^n} = \frac{120,000,000}{(1.08)^3} = \$95,254,000$$

# Interpretation:

If the project's current cost is less than **\#95.25 million**, it's financially viable. Firms use this in **Net Present Value (NPV)** analysis to decide whether to invest.



# 2. Loan Repayment Valuation

## Case:

A bank is evaluating the value of a **\#50 million** loan to be repaid after **5 years** at **6%** interest.

# Calculation:

$$PV = \frac{50,000,000}{(1.06)^5} = \$37,363,000$$

# Interpretation:

The present value shows how much the loan repayment is worth today. The bank uses this to determine whether the interest rate adequately compensates for the time and risk.



# 3. Bond Pricing

#### Case:

An investor wants to know the **current price (PV)** of a bond that pays **\#5 million** per year in coupons for 5 years and **\#100 million** at maturity. Market interest rate = **4**%.

#### Calculation:

$$PV = \sum_{t=1}^{5} \frac{5,000,000}{(1.04)^t} + \frac{100,000,000}{(1.04)^5} = \$117,665,000$$

# Interpretation:

If the bond's market price is below #117.7 million, it is undervalued; if above, it's overpriced. This is how **bond investors** assess fair value.

# 4. Retirement Planning (Pension Valuation)

#### Case:

An employee expects to receive \#3 million per month for 20 years after retirement. The discount rate is 5% per year (0.416% per month).

# Calculation (PV of an Annuity):

$$PV = PMT \times \frac{1 - (1 + r)^{-n}}{r}$$

$$= 3,000,000 \times \frac{1 - (1.00416)^{-240}}{0.00416} = \text{$\frac{1}{4}$}446,700,000$$

# Interpretation:



# 5. Real Estate Valuation

#### Case:

A building is expected to generate **#30 million annual rent** for 10 years. The investor's required rate of return is **7**%.

## Calculation:

$$PV = 30,000,000 \times \frac{1 - (1.07)^{-10}}{0.07} = \$210,000,000$$

# Interpretation:

The investor should pay no more than #210 million for the property to meet their expected return. This method is used widely in **real estate appraisal** and **lease evaluation**.

# Q&A